FL + IoT: Challenges and Opportunities

Billions of IoT devices will be deployed in the near future, taking advantage of the faster Internet speed and the possibility of orders of magnitude more endpoints brought by 5G/6G. With the blooming of IoT devices, vast quantities of data that may contain the private information of users will be generated. The high communication and storage costs, mixed with privacy concerns, will increasingly be challenging the traditional ecosystem of centralized over-the-cloud learning and processing for IoT platforms. Federated Learning (FL) has emerged as the most promising alternative approach to this problem. In FL, training of data-driven machine learning models is an act of collaboration between multiple clients without requiring the data to be brought to a central point, hence alleviating communication and storage costs and providing a great degree of user-level privacy. We discuss the opportunities and challenges of FL for IoT platforms, as well as how it can enable future IoT applications.

Read more here: https://arxiv.org/pdf/2111.07494.pdf

Cibus Consulting

Based in Southern California, we are a branding and design agency specializing in creating full-scale digital solutions for our clients. Our core services include Website Design, SEO & Ads Management, Digital Marketing, IT Implementation, and Business Development. We use our deep industry knowledge, rigorous analysis, and data-driven insights to help clients modernize their business operations and unlock their greatest earnings potential.

https://www.cibusconsulting.com
Previous
Previous

New papers at AAAI’22!

Next
Next

Seminar on Privacy Leakage in Federated Learning